ACCA PM变量关系:Correlation
文章来源:ACCA官网
发布时间:2021-08-13 16:26
阅读:1199次

Correlation
Two variables are said to be correlated if they are related to one another and if changes in one tend to accompany changes in the other.Correlation can be positive(where increases in one variable result in increases in the other)or negative(where increases in one variable result in decreases in the other).
The chart shown in the‘line of best fit’section above shows a strong positive correlation.Some other relationships are shown below:
pm-regression-3
It is possible that there is no correlation between the variables.A horizontal line would suggest no correlation,as would the following:
pm-regression-4
Where a company wants to use past data to forecast the future,the stronger the correlation,the better the estimates will be.
The strength of correlation between variables can be measured by the correlation coefficient which can be calculated using the following formula:
pm-regression-7
r=1 denotes perfect positive linear correlation
r=-1 denotes perfect negative linear correlation
r=0 denotes no linear correlation
The value of the correlation coefficient must lie between-1 and 1.The closer the value is to 1 and-1,the stronger the correlation.
Using the previous example to calculate r:
pm-regression-8【点击免费下载>>>更多ACCA学习相关资料】
r=0.965 which indicates a strong positive correlation.
A further calculation is the coefficient of determination which is calculated as r2.
The coefficient of determination gives the proportion of changes in y(the dependent variable)that can be explained by changes in x(the independent variable).In this example,r2=0.931,so 93.1%of the changes in total production cost can be explained by changes in activity levels.This means that 6.9%of the changes must be due to other factors.
翻译参考
相关性
如果两个变量彼此相关,并且一个变量的变化往往伴随另一个变量的变化,则称这两个变量是相关的。相关性可以是正的(一个变量的增加导致另一个变量的增加)或负的(一个变量的增加导致另一个变量的减少)。
上面“最佳拟合线”部分中显示的图表显示出很强的正相关性。其他一些关系如下所示:
变量之间可能没有相关性。水平线表示没有相关性,如下所示:
如果公司想使用过去的数据来预测未来,相关性越强,估计就越好。
变量之间的相关强度可以通过相关系数来衡量,相关系数可以使用以下公式计算:
r=1表示完美的正线性相关
r=-1表示完美的负线性相关
r=0表示没有线性相关
相关系数的值必须介于-1和1之间。值越接近1和-1,相关性越强。
使用前面的例子来计算r:
r=0.965,表示强正相关。
进一步的计算是确定系数,其计算为r 2。
决定系数给出了可以用x(自变量)的变化来解释的y(因变量)变化的比例。在本例中,r 2=0.931,因此总生产成本变化的93.1%可以用活动水平的变化来解释。这意味着6.9%的变化必须是由于其他因素造成的。
2022年ACCA最新学习资料包
请大家认真填写以下信息,获取2025年ACCA学习资料包,会以网盘链接的形式给到大家,点击免费领取后请尽快保存。
*姓名不能为空
*手机号错误
*验证码错误